Бесконтактные способы измерения расстояний, используя волны в ультразвуковом диапазоне широко применяются в нашей повседневной жизни. Мы сталкиваемся с ними, делая УЗИ в поликлинике, используя эхолот на рыбалке. Парктроник в автомобиле помогает нам избежать столкновения, сдавая задним ходом. И конечно же ультразвуковые датчики широко применяются в робототехнике, помогая нашему роботу лучше «осязать» мир. В живой природе принцип ультразвуковой локации используется, например, летучими мышами и дельфинами. Сегодня я расскажу как же все это работает.
Что такое ультразвук
Человек способен воспринимать звуковые волны, совершающие колебания в диапазоне от 20 до 20000 Гц (напомню, 1 Герц — это число колебаний в секунду). С возрастом диапазон воспринимаемых нами частот снижается, но в среднем, ребенок способен воспринимать звук именно в этом диапазоне. Если же колебания звуковых волн превысят этот диапазон, то человек перестает воспринимать их, но летучие мыши, собаки, дельфины, и мотыльки вполне могут их услышать. Такие колебания являются примерами ультразвука. Ультразвук — это упругие колебания и волны в диапазоне от 20 кГц до 1 ГГц. Термин упругие подчеркивает неэлектромагнитную природу этих колебаний и волн.
Длина волны находится в обратной зависимости от ее частоты, следовательно ультразвуковые волны, по сравнению с обычным звуком имеют меньшую длину волны. Вследствие этого, ультразвуковые волны отражаются от различных препятствий гораздо лучше, чем обычные звуковые волны, что делает их весьма полезными на практике.
Пьезоэффект и магнитострикция
Как же получить колебания в ультразвуковом диапазоне?
Кристаллы некоторых материалов (таких как кварц) способны совершать очень быстрые колебания, при прохождении через них электричества. Это, так называемый, обратный пьезоэффект. Во время вибрации, они толкают и тянут воздух вокруг себя, производя, тем самым, ультразвуковые волны. Устройства, которые производят ультразвуковые волны с помощью пьезоэлектричества известны как пьезоэлектрические преобразователи. Пьезоэлектрические кристаллы также работать в обратном порядке: если ультразвуковые волны, распространяясь по воздуху, сталкиваются с пьезоэлектрическим кристаллом, слегка деформируют его поверхность, в результате чего в кристалле возникает электрическое поле. Итак, если подключить пьезоэлектрический кристалл к измерителю электрического напряжения, мы получим детектор ультразвука.
Ультразвуковые волны могут быть получены с использованием магнетизма вместо электричества. Так же, как пьезоэлектрические кристаллы производят ультразвуковые волны в ответ на электричество, существуют и другие кристаллы, которые излучают ультразвук в ответ на магнетизм. Это эффект магнистрикции. Такие кристаллы называются магнитострикционными кристаллами. Датчики, использующие их, называются магнитострикционными преобразователями.
В англоязычной литературе ультразвуковые датчики называются ultrasound sensor.
Ультразвуковой дальномер
Используя пьезоэлектрические или магнитострикционные преобразователи мы можем создать устройство, измеряющее расстояние до объектов — ультразвуковой дальномер, который работает следующим образом.
В момент измерения мы создаем электрическое колебание при помощи генератора, которое преобразуясь (например, при помощи пьезокристалла) в ультразвуковую волну, излучается в окружающее пространcтво. Эта волна отражается от препятствия и возвращается как эхо в приемник (также можно использовать пьезокристалл). Измеряя время между посылкой и приемом нашего отраженного сигнала и, зная скорость звуковой волны , распространяемой в данной среде (для воздуха это величина около 340 м/с), мы можем вычислить расстояние до препятствия.
Ограничения
- Повышением частоты (снижением длины) излучаемой волны можно увеличивать чувствительность прибора к более мелким объектам.
- Частичные отражения, или как их называют паразитный эхо-сигнал, могут исказить результаты измерений (причиной могут стать криволинейные или наклонные по-отношению к направлению излучения сигнала поверхности).
- Измерения объектов из звукопоглощающих, изоляционных материалов или имеющих тканевую (шерстяную) поверхность могут привести к неправильным измерениям вследствии поглощения (ослабления) сигнала. Домашний кошара может стать этаким «стелсом» для ультразвукового дальномера.
- Чем меньше объект, тем меньшую отражающую поверхность он имеет. Это приводит к более слабому отраженному сигналу.
- При высокой влажности (дождь, снег) сигнал также может частично отражаться от капель (снежинок), что приводит к паразитному эхо-сигналу.
- Сильный ветер может повлиять на распространение волн (буквально «сдуть»), что также приводит к ошибке измерений.
Зная ограничения, связанные с физической природой ультразвука можно решить подходит этот тип дальномера для вашей задачи или же нет.
[add_ratings]
Ещё одна отличная статья) Было интересно почитать. Хотелось бы ещё почитать про инфракрасные дальномеры ( а может и ещё какие существуют), а так же примерное их сравнение, по эффективной дальности, углу сигнала( в смысле площадь которую охватывает каждый их дальномеров)и т.д...
Большое спасибо за ваш блог) вещи которые, в принципе, можно найти в разных местах тут описаны именно с необходимой точки зрения, и как правило дают исчерпывающую информацию, в отличии от других, не специализированных ресурсов, где информация либо слишком общая, либо черезчур полная и излишняя).
Про бесконтактные способы измерений различных величин (дальномеры, в частности, относятся к бесконтактным измерителям линейных расстояний) я обязательно буду писать. Вообще, если можно, что-то излучить, затем принять отраженное что-то и замерить какие-то параметры, то это и будет основой процесса, на котором строятся все дальномеры. Эти приборы работают в различных диапазонах: инфракрасном, ультразвуковом, радиочастотном и в самом высоком дипазоне электромагнитных волн работают уже лазерные дальномеры. Радиолокационные станции (РЛС) в авиации, на водном транспорте работают в радиочастотном диапазоне, так же как и радары инспекторов ГИБДД. Чем выше частота на которой работает прибор, тем выше его потенциальная точность, поэтому наименее точными являются ультразвуковые дальномеры, к самым точным относятся приборы, использующие лазеры. Для каждой длины волны существуют условия, при которых она лучше или хуже распространяется — этими свойствами волн и определяются основные особенности различных типов дальномеров. Ну, это в двух словах)) Я опишу в своих дальнейших публикациях различные типы дальномеров и опишу условия их оптимальной применимости и многое постараюсь рассказать как можно ближе к практике на примерах конкретных устройств и их реализации.
Постараюсь писать интересные и полезные статьи)) Спасибо, за обратную связь — для меня это важно.
Спасибо за быстрый и развёрнутый ответ)